Suppression of hypoglossal motoneurons during the carbachol-induced atonia of REM sleep is not caused by fast synaptic inhibition.
نویسندگان
چکیده
The depression of upper airway motor activity that develops during the rapid eye movement (REM) stage of sleep is a major factor allowing upper airway obstructions to occur in patients with sleep apnea syndrome. Microinjections of carbachol, a cholinergic agonist, into the dorsal pontine tegmentum of chronically instrumented cats produce REM sleep. In acutely decerebrate cats, carbachol induces postural atonia, eye movements and a depression of the motor output to respiratory pump and upper airway muscles. In lumbar motoneurons, the depression of activity is due to a glycinergic inhibition that has the same characteristics during natural REM sleep in chronic cats and carbachol-induced atonia in decerebrate cats (Neurophysiology, 57 (1987) 1118-1129). The mechanisms that lead to the suppression of upper airway motoneuronal activity during REM sleep are unknown. In this study, we assessed whether the depression of hypoglossal (XII) nerve activity induced by pontine carbachol injections is caused by inhibitory amino acids acting within the XII nucleus. In decerebrate, paralyzed and artificially ventilated cats, we recorded the activities of both XII nerves (genioglossal branches), one phrenic and a cervical motor branch (to monitor postural activity). Postural atonia and respiratory depression were induced by pontine carbachol injections. The inhibitory amino acid receptor antagonists, strychnine (glycine receptors) or bicuculline (GABAA receptors), were injected (100-250 nl; 1.0-2.5 mM) into one XII nucleus (the other served as control) in an attempt to reduce or abolish the depression subsequently induced by pontine carbachol. Prior to the carbachol injections, both antagonists caused similar elevations of XII nerve activity on the treated side (30-40%). However, following carbachol, the XII nerve activity on the treated side was depressed to about 25% of the (pre-antagonist and pre-carbachol) control level, whereas the depression on the untreated side was slightly greater, to 10-15% of the control. Additional injections of antagonists during the carbachol-induced depression produced no further increase in nerve activity. This minor effect of the antagonists on the carbachol-induced depression of XII nerve activity was in contrast to the marked disinhibitory effects that both antagonists had on the XII nerve response to electrical stimulation of the lingual nerve. The latter was used as a control for the ability of strychnine and bicuculline to exert disinhibitory effects within the XII nucleus. Thus, there is little, if any, contribution of these inhibitory amino acids to the depression of XII motoneurons during the carbachol-induced, REM sleep-like postural and respiratory depression; mechanisms other than fast synaptic inhibition must be involved.
منابع مشابه
Adventures and tribulations in the search for the mechanisms of the atonia of REM sleep.
1473 The Background Thirty years ago, the first report was published with intracel-lular recordings from motoneurons, trigeminal motoneurons, in chronically instrumented, behaving cats across the sleep-wake cycle. A major observation was that synaptic activity, both ex-citatory and inhibitory, declined during rapid eye movement (REM) sleep in association with the characteristic motoneu-ronal hy...
متن کاملREM sleep-like atonia of hypoglossal (XII) motoneurons is caused by loss of noradrenergic and serotonergic inputs.
RATIONALE Studies of hypoglossal (XII) motoneurons that innervate the genioglossus muscle, an upper airway dilator, suggested that the suppression of upper airway motor tone during REM sleep is caused by withdrawal of excitation mediated by norepinephrine and serotonin. OBJECTIVES Our objectives were to determine whether antagonism of aminergic receptors located in the XII nucleus region can ...
متن کاملCombined antagonism of aminergic excitatory and amino acid inhibitory receptors in the XII nucleus abolishes REM sleep-like depression of hypoglossal motoneuronal activity.
It is hypothesized that the suppression of motor activity (atonia) that occurs during REM sleep is caused by the combined inhibition of motoneurons by glycine or GABA and withdrawal of excitation mediated by serotonin and norepinephrine. However, it is not known whether these mechanisms can fully account for the atonia. In urethane-anesthetized, paralyzed and artificially ventilated rats, REM s...
متن کاملDifferential suppression of upper airway motor activity during carbachol-induced, REM sleep-like atonia.
Microinjections of carbachol into the pontine tegmentum of decerebrate cats have been used to study the mechanisms underlying the suppression of postural and respiratory motoneuronal activity during the resulting rapid eye movement (REM) sleep-like atonia. During REM sleep, distinct respiratory muscles are differentially affected; e.g., the activity of the diaphragm shows little suppression, wh...
متن کاملChanges in electrophysiological properties of cat hypoglossal motoneurons during carbachol-induced motor inhibition.
The control of hypoglossal motoneurons during sleep is important from a basic science perspective as well as to understand the bases for pharyngeal occlusion which results in the obstructive sleep apnea syndrome. In the present work, we used intracellular recording techniques to determine changes in membrane properties in adult cats in which atonia was produced by the injection of carbachol int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 611 2 شماره
صفحات -
تاریخ انتشار 1993